Small Deviations of Gaussian Random Fields in Lq–Spaces

نویسندگان

  • Mikhail Lifshits
  • Werner Linde
  • Zhan Shi
چکیده

We investigate small deviation properties of Gaussian random fields in the space Lq(R N , μ) where μ is an arbitrary finite compactly supported Borel measure. Of special interest are hereby “thin” measures μ, i.e., those which are singular with respect to the N–dimensional Lebesgue measure; the so–called self–similar measures providing a class of typical examples. For a large class of random fields (including, among others, fractional Brownian motions), we describe the behavior of small deviation probabilities via numerical characteristics of μ, called mixed entropy, characterizing size and regularity of μ. For the particularly interesting case of self–similar measures μ, the asymptotic behavior of the mixed entropy is evaluated explicitly. As a consequence, we get the asymptotic of the small deviation for N–parameter fractional Brownian motions with respect to Lq(R N , μ)–norms. While the upper estimates for the small deviation probabilities are proved by purely probabilistic methods, the lower bounds are established by analytic tools concerning Kolmogorov and entropy numbers of Hölder operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Deviations of Weighted Fractional Processes and Average Non–linear Approximation

We investigate the small deviation problem for weighted fractional Brownian motions in Lq–norm, 1 ≤ q ≤ ∞. Let BH be a fractional Brownian motion with Hurst index 0 < H < 1. If 1/r := H + 1/q, then our main result asserts lim ε→0 ε log P (∥∥∥ρBH∥∥∥ Lq(0,∞) < ε ) = −c(H, q) · ‖ρ‖ Lr(0,∞) , provided the weight function ρ satisfies a condition slightly stronger than the r– integrability. Thus we e...

متن کامل

SMALL DEVIATIONS OF RIEMANN–LIOUVILLE PROCESSES IN Lq–SPACES WITH RESPECT TO FRACTAL MEASURES

We investigate Riemann–Liouville processes RH ,H > 0, and fractional Brownian motions BH , 0 < H < 1, and study their small deviation properties in the spaces Lq([0, 1], μ). Of special interest are hereby thin (fractal) measures μ, i.e., those which are singular with respect to the Lebesgue measure. We describe the behavior of small deviation probabilities by numerical quantities of μ, called m...

متن کامل

Predictions of mixed non - Gaussian cosmological density fields for the cosmic microwave background radiation

We present simulations of the Cosmic Microwave Background Radiation (CMBR) power spectrum for a class of mixed, non-Gaussian, primordial random fields. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination o...

متن کامل

White Noise Representation of Gaussian Random Fields

We obtain a representation theorem for Banach space valued Gaussian random variables as integrals against a white noise. As a corollary we obtain necessary and sufficient conditions for the existence of a white noise representation for a Gaussian random field indexed by a measure space. We then show how existing theory for integration with respect to Gaussian processes indexed by [0, 1] can be ...

متن کامل

Minkowski Functional Description of Microwave Background Gaussianity

A Gaussian distribution of cosmic microwave background temperature fluctuations is a generic prediction of inflation. Upcoming high-resolution maps of the microwave background will allow detailed tests of Gaussianity down to small angular scales, providing a crucial test of inflation. We propose Minkowski functionals as a calculational tool for testing Gaussianity and characterizing deviations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006